37 research outputs found

    Multidecadal Wind Variability Drives Temperature Shifts on the Agulhas Bank

    Get PDF
    Key Points: • A regional ocean model is used to examine multidecadal shelf temperature changes on the Agulhas Bank • There are distinct shelf temperature regime changes in 1966 and 1996 • These regime shifts are caused by changes in coastal upwelling linked to large-scale wind variability The Agulhas Bank is an important area for the spawning of small pelagic fish and other species. Here, within a NEMO ocean model, we investigate changes in temperature over the Bank on multidecadal time scales. In agreement with previous observational studies, a shift to colder temperatures is found in 1997. The model also simulates an earlier shift from colder to warmer temperatures in 1966. These shifts are coastally confined and shown, using a climatologically forced model run as a control, to be driven by a north‐south migration in the large‐scale wind belts, rather than by changes in downward heat fluxes or changes in the Agulhas Current itself. The zonal wind changes on the Agulhas Bank show a significant relationship with the Southern Annular Mode, showing some promise for future predictability of cold and warm regimes on the Agulhas Bank. Thus, while the Agulhas Current has been shown in previous work to have a large impact on intra‐annual and interannual temperature variability, this work shows that multidecadal variability in temperature on the shelf is likely to be wind forced

    The importance of monitoring the Greater Agulhas Current and its inter-ocean exchanges using large mooring arrays

    Get PDF
    The 2013 Intergovernmental Panel on Climate Change report, using CMIP5 and EMIC model outputs suggests that the Atlantic Meridional Overturning Circulation (MOC) is very likely to weaken by 11–34% over the next century, with consequences for global rainfall and temperature patterns. However, these coupled, global climate models cannot resolve important oceanic features such as the Agulhas Current and its leakage around South Africa, which a number of studies have suggested may act to balance MOC weakening in the future. To properly understand oceanic changes and feedbacks on anthropogenic climate change we need to substantially improve global ocean observations, particularly within boundary current regions such as the Agulhas Current, which represent the fastest warming regions across the world’s oceans. The South African science community, in collaboration with governing bodies and international partners, has recently established one of the world’s most comprehensive observational networks of a western boundary current system, measuring the Greater Agulhas Current System and its inter-ocean exchanges south of Africa. This observational network, through its design for long-term monitoring, collaborative coordination of resources and skills sharing, represents a model for the international community. We highlight progress of the new Agulhas System Climate Array, as well as the South African Meridional Overturning Circulation programme, which includes the Crossroads and GoodHope hydrographic transects, and the South Atlantic MOC Basin-wide Array. We also highlight some of the ongoing challenges that the programmes still face

    Agulhas Current Meanders Facilitate Shelf-Slope Exchange on the Eastern Agulhas Bank

    Get PDF
    Large solitary meanders are arguably the dominant mode of variability in the Agulhas Current. Observational studies have shown that these large meanders are associated with strong upwelling velocities and affect the shelf circulation for over 100 days per year. Here 10-year time series from two ocean general circulation models are used to create a composite picture of the Agulhas Current and its interactions with the shelf circulation in meandering and nonmeandering modes. Both models show good agreement with the size, propagation speed, and frequency of observed meanders. These composite meanders are then used to examine the response of shelf waters to the onset of large meanders, with the use of model output enabling the dynamics at depth to be explored. Results show a composite mean warming of up to 3°C of depth-averaged temperature along the shelf edge associated with an intrusion of the current jet onto the shelf driven by an intensification of the flow along the leading edge of large meanders. However, this intensification of flow results in cooling of bottom waters, driving cold events at the shelf break of <10°C at 100 m. Thus, the intensification of the current jet associated with large meander events appears to drive strong up and downwelling events across the inshore front of the Agulhas Current, facilitating shelf-slope exchange

    Evolving and Sustaining Ocean Best Practices to Enable Interoperability in the UN Decade of Ocean Science for Sustainable Development

    Get PDF
    The UN Decade of Ocean Science for Sustainable Development (Ocean Decade) challenges marine science to better inform and stimulate social and economic development while conserving marine ecosystems. To achieve these objectives, we must make our diverse methodologies more comparable and interoperable, expanding global participation and foster capacity development in ocean science through a new and coherent approach to best practice development. We present perspectives on this issue gleaned from the ongoing development of the UNESCO Intergovernmental Oceanographic Commission (IOC) Ocean Best Practices System (OBPS). The OBPS is collaborating with individuals and programs around the world to transform the way ocean methodologies are managed, in strong alignment with the outcomes envisioned for the Ocean Decade. However, significant challenges remain, including: (1) the haphazard management of methodologies across their lifecycle, (2) the ambiguous endorsement of what is "best" and when and where one method may be applicable vs. another, and (3) the inconsistent access to methodological knowledge across disciplines and cultures. To help address these challenges, we recommend that sponsors and leaders in ocean science and education promote consistent documentation and convergence of methodologies to: create and improve context-dependent best practices; incorporate contextualized best practices into Ocean Decade Actions; clarify who endorses which method and why; create a global network of complementary ocean practices systems; and ensure broader consistency and flexibility in international capacity development

    SEAmester – South Africa’s first class afloat

    Get PDF
    publisher versionFrom Introduction: Marine science is a highly competitive environment. The need to improve the cohort of South African postgraduates, who would be recognised both nationally and internationally for their scientific excellence, is crucial. It is possible to attract students early on in their careers to this discipline via cutting-edge science, technology and unique field experiences. Through the engagement of students with real-life experiences such as SEAmester, universities supporting marine science postgraduate degree programmes can attract a sustainable throughput of numerically proficient students. By achieving a more quantitative and experienced input into our postgraduate degree programmes, we will, as a scientific community, greatly improve our long-term capabilities to accurately measure, model and predict the impacts of current climate change scenarios. The short-term goal is to attract and establish a cohort of proficient marine and atmospheric science graduates who will contribute to filling the capacity needs of South African marine science as a whole. The SEAmester programme, by involving researchers from across all the relevant disciplines and tertiary institutions, provides an opportunity to build a network of collaborative teaching within the marine field. In doing so, these researchers will foster and strengthen new and current collaborations between historically white and black universities (Figure 1). The long-term objective of SEAmester is to build critical mass within the marine sciences to ensure sustained growth of human capacity in marine science in South Africa – aligning closely with the current DST Research and Development strategies and the Operation Phakisa Oceans Economy initiative

    Technologies for a FAIRer use of Ocean Best Practices

    Get PDF
    The publication and dissemination of best practices in ocean observing is pivotal for multiple aspects of modern marine science, including cross-disciplinary interoperability, improved reproducibility of observations and analyses, and training of new practitioners. Often, best practices are not published in a scientific journal and may not even be formally documented, residing solely within the minds of individuals who pass the information along through direct instruction. Naturally, documenting best practices is essential to accelerate high-quality marine science; however, documentation in a drawer has little impact. To enhance the application and development of best practices, we must leverage contemporary document handling technologies to make best practices discoverable, accessible, and interlinked, echoing the logic of the FAIR data principles [1]

    Best practice summary Report

    Get PDF
    Report summarizing the relevant best practices available in the GEOSS (AtlantOS) best practices registr

    The Joint IOC (of UNESCO) and WMO collaborative effort for met-ocean services

    Get PDF
    The Joint Committee for Oceanography and Marine Meteorology (JCOMM), a joint technical commission of IOC of UNESCO and WMO, has devised a coordination mechanism for the fit-for-purpose delivery of an end-to-end system, from ocean observations to met-ocean operational services. This paper offers a complete overview of the activities carried out by JCOMM and the status of the achievements up to 2017. The JCOMM stakeholders are the WMO Members and the IOC Member States, their research and operational Institutions, which mandated JCOMM to devise an international strategy to advance toward the achievement of the United Nations Sustainable Development Goals. The three activity areas, namely the Observation Program Area-OPA, the Data Management Program Area-DMPA and the Services and Forecasting Services Program Area-SFSPA have established several expert teams to contribute to the international coordination. OPA is organized in observing networks connected with different observing technologies, DMPA organizes the overall near-real time and delayed mode data assembly and delivery methodology and architecture and the SFSPA coordinates the met-ocean services stemming out of observations and data management. The future developments should strengthen the coordination in the three program areas considering the inclusion of new and emergent observing technologies, the interoperability of met-ocean data assembly centers and the establishment of efficient research to operations protocols, as well as better fit-for-purpose customized services for the public and private sectors

    A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs

    Get PDF
    Š The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hermes, J. C., Masumoto, Y., Beal, L. M., Roxy, M. K., Vialard, J., Andres, M., Annamalai, H., Behera, S., D'Adamo, N., Doi, T., Peng, M., Han, W., Hardman-Mountford, N., Hendon, H., Hood, R., Kido, S., Lee, C., Lees, T., Lengaigne, M., Li, J., Lumpkin, R., Navaneeth, K. N., Milligan, B., McPhaden, M. J., Ravichandran, M., Shinoda, T., Singh, A., Sloyan, B., Strutton, P. G., Subramanian, A. C., Thurston, S., Tozuka, T., Ummenhofer, C. C., Unnikrishnan, A. S., Venkatesan, R., Wang, D., Wiggert, J., Yu, L., & Yu, W. (2019). A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs. Frontiers in Marine Science, 6, (2019): 355, doi: 10.3389/fmars.2019.00355.The Indian Ocean is warming faster than any of the global oceans and its climate is uniquely driven by the presence of a landmass at low latitudes, which causes monsoonal winds and reversing currents. The food, water, and energy security in the Indian Ocean rim countries and islands are intrinsically tied to its climate, with marine environmental goods and services, as well as trade within the basin, underpinning their economies. Hence, there are a range of societal needs for Indian Ocean observation arising from the influence of regional phenomena and climate change on, for instance, marine ecosystems, monsoon rains, and sea-level. The Indian Ocean Observing System (IndOOS), is a sustained observing system that monitors basin-scale ocean-atmosphere conditions, while providing flexibility in terms of emerging technologies and scientificand societal needs, and a framework for more regional and coastal monitoring. This paper reviews the societal and scientific motivations, current status, and future directions of IndOOS, while also discussing the need for enhanced coastal, shelf, and regional observations. The challenges of sustainability and implementation are also addressed, including capacity building, best practices, and integration of resources. The utility of IndOOS ultimately depends on the identification of, and engagement with, end-users and decision-makers and on the practical accessibility and transparency of data for a range of products and for decision-making processes. Therefore we highlight current progress, issues and challenges related to end user engagement with IndOOS, as well as the needs of the data assimilation and modeling communities. Knowledge of the status of the Indian Ocean climate and ecosystems and predictability of its future, depends on a wide range of socio-economic and environmental data, a significant part of which is provided by IndOOS.This work was supported by the PMEL contribution no. 4934

    The Joint IOC (of UNESCO) and WMO collaborative effort for Met-Ocean services

    Get PDF
    The WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) has devised a coordination mechanism for the fit-for-purpose delivery of an end-to-end system, from ocean observations to met-ocean operational services. This paper offers a complete overview of the activities carried out by JCOMM and the status of the achievements up to 2018. The JCOMM stakeholders consist of the research and operational institutions of WMO members and the IOC member states, which mandated JCOMM to devise an international strategy to move toward the achievement of the United Nations Sustainable Development Goals. The three areas of activity are the Observation Program Area (OPA), the Data Management Program Area (DMPA) and the Services and Forecasting Services Program Area (SFSPA), and several expert teams have been established to contribute to the international coordination efforts. OPA is organized into observing networks connected by different observing technologies, DMPA organizes the overall near-real time and delayed mode data assembly, and the delivery methodology and architecture, and the SFSPA coordinates the met-ocean services resulting from the observations and data management. Future developments should enhance coordination in these three program areas by considering the inclusion of new and emergent observing technologies, the interoperability of met-ocean data assembly centers and the establishment of efficient research to operations protocols, in addition to better fit-for-purpose customized services in both the public and private sectors
    corecore